• 英特尔存储又变身 傲腾后带来PB级产品 2018-03-28
  • 诺贝尔经济学奖得主奥利弗·哈特教授在上海交大演讲[图] 2018-03-28
  • 12315平台二期上线 消费者可支付宝一键维权 2018-03-28
  • 4名山西籍企业家跻身2018胡润全球富豪榜 2018-03-28
  • 奖扶养老政策让群众真正享受政府帮助养老的待遇 2018-03-28
  • 英超西甲全主胜!足彩17167期任九10万注242元 2018-03-28
  • 新華網等媒體聯合簽署互聯網視聽服務自律公約 2018-03-28
  • 美草甘膦“致癌”风波再起 2018-03-28
  • 兴化市长黄红旗:水润兴化,如诗如画 2018-03-28
  • 石河子高新区加码电子商务产业发展 2018-03-28
  • 杜兰特正牌女友曝光?是位加州本地人 2018-03-28
  • 夏季的西归浦森林 仿佛置身于富含植物杀菌素的巨大天然空调 济州& 韩民族日报 2018-03-28
  • “失恋女子”称微信转账能十倍返还 贪心男子被骗 2018-03-28
  • 【浪花】那些遥远又迫近的灵魂(组诗) 2018-03-28
  • 全英赛王懿律黄东萍晋级次轮 2018-03-28
  • 重庆时时彩走势图下载 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

    三角形的高、中线与角平分线 教学设计

    重庆时时彩走势图下载 www.dfc763.club §7.1.2三角形的高、中线与角平分线

    【教学重点与难点】

    教学重点:1.了解三角形的高、中线与角平分线的概念.

    2.能利用三角形的高、中线和角平分线的性质进行简单计算.

    教学难点:1.能用自己的语言说出三角形高、中线与角平分线的概念.

    2.熟练运用三角形的高、中线和角平分线的性质进行有关计算.

    【教学目标】

    1.了解三角形的高、中线与角平分线的概念.毛

    2.准确区分三角形的高、中线与角平分线.

    3.能够独立完成与三角形的高、中线和角平分线有关的计算.

    【教学方法】

    以学生实践为主,在已学内容的基础上进行更进一步的探究,从而发现新的结论,以此培养学生发现和解决问题的能力.

    【教学过程】

    一.回顾旧知 提出问题

    (设计说明:通过对已学知识的回忆来巩固基础知识的运用,并借此引入新课.)

    问题1:数一数,图中共有多少个三角形?请将它们全部用符号表示出来.

    学生回答:图中共有5个三角形.

    它们分别是:△ABC、△ABD、△ACD、

    △ADE、△CDE.

    问题2:利用长为3、5、6、9的四条线段可以组成几个三角形?为什么?

    学生回答:可以组成2个三角形.

    从四条线段中任选三条组成三角形,共有四种选法:①3、5、6,②3、5、9,③3、6、9,④5、6、9,其中,满足“三角形两边之和大于第三边”的只有第①、④这两组.

    问题3:利用△ABC的一条边长为4cm,面积是24 cm2这两个条件,你能求出什么结论?

    学生回答:能够求出的△ABC高是3 cm.

    (教学说明:教师利用问题让学生回顾所学知识,特别是问题3内容的变化,可以引起学生注意和疑问,将学生的思路引入与三角形有关的线段中.)

    二、探索新知 解决问题

    1.通过作图探索三角形的高

    (设计说明:通过经历画三角形的高的过程,使学生在头脑中留下清晰形象,并能结合这些具体形象叙述高的定义.)

    问题1:你能画出下列三角形的所有的高吗?

    学生画出三角形所有的高,观察这些高的特点.

    问题2:根据画高的过程说明什么叫三角形的高?

    学生讨论回答,师完善并归纳:从三角形的一个顶点向它的对边所在直线作垂线,连接顶点和垂足之间的线段称为三角形的高.

    问题3:在这些三角形中你能画出几条高?它们有什么相同点和不同点?

    学生回答:每个三角形都能画出三条高.

    相同点是:三角形的三条高交于同一点.

    文本框: 不同点是:锐角三角形的高交于三角形内一点,直角三角形的高交于直角的顶 点,钝角三角形的高交于三角形外一点.

    问题4:如图所示,如果AD是△ABC的高,你能得到哪些结论?

    学生回答:如果AD是△ABC的高,则有:

    AD⊥BC于D,∠ADB=∠ADC=90°.

    (教学说明:三角形的高的概念在书中并没有具体给出,所以学生在归纳定义的时候会有一定的困难.那么在授课时就要留给学生充足的时间进行思考和讨论,教师可以引导学生先利用具体图形进行定义,再由具体图形中抽出准确、简明的语言,同时要强调:三角形的高是一条线段.在问题3中,有些学生会认为直角三角形只能画出斜边上的一条高,这时教师要给予讲解,说明另外两条直角边也是这个直角三角形的高.而问题4是要将三角形的高用符号语言表示出来,这是为以后学习证明打基?。?/p>

    2.类比探索三角形的高的过程探索三角形的中线

    (设计说明:利用类比的方法进行探索,可以留给学生更多思考与探究的空间,有得于拓展学生的思维,培养学生自主探究的学习习惯.)

    问题1:如图,如果点C是线段AB的中点,你能得到什么结论?

    文本框: 学生回答:

    问题2:如图,如果点D是线段BC的中点,那么线段AD就称为△ABC 的中线.类比三角形的高的概念,试说明什么叫三角形的中线?由三角形的中线能得到什么结论?

    学生回答:三角形中连结一个顶点和它对边中的线段称为三角形的中线.

    如果线段AD是△ABC的中线,那么

    问题3:画出下列三角形的所有的中线,并讨论说明三角形的中线有什么特点?

    学生回答:无论哪种三角形,它们都有三条中线,并且这三条中线都会交于一点,这一点都在三角形的内部.

    文本框: 问题4:如图所示,在△ABC中,AD是△ABC的中线,AE是△ABC的高.试判断△ABD和△ACD的面积有什么关系?为什么?

    学生回答:△ABD和△ACD的面积相等.理由:

    ∵AD是△ABC的中线

    ∴BD=CD

    ∵AE既是△ABD的高,也是△ACD的高

    ∴△ABD和△ACD的面积相等.

    问题5:通过问题4你能发现什么规律?

    学生回答:三角形的中线将三角形的面积平均分成两份.

    (教学说明:让学生利用对三角形的高的探究过程,利用类比的方法进行对三角形的中线的探究.“类比思想”是数学学习中常用的一种思想,所以在授课过程中要让学生体会运用这种思想进行探究的好处,培养自主探究的能力.问题4和问题5的设立是对三角形中线的知识进行扩展,并不是教科书中的内容,但能够使学生更深刻地体会三角形中线的特点,同时,根据课堂时间的需要,对于这两个问题的讲授,教师可以自行调节.)

    3.通过类比的方法探究三角形的角平分线

    文本框: (设计说明:再次使用类比的方法进行探究,让学生经历动脑思考探索的过程,对知识有进一步的理解.)

    问题1:如图,若OC是∠AOB的平分线,你能得到什么结论?

    学生回答:

    问题2:如图,在△ABC中,如果∠BAC的平分线AD交BC边于点D,我们就称AD是△ABC的角平分线.类比探索三角形的高和中线的过程,你能得到哪些结论?三角形的角平分线与角的角平分线相同吗?为什么?

    学生回答:三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段称为三角形的角平分线.

    三角形有三条角平分线,并且这三条角平分线在三角形内交于一点.

    如果AD是△ABC的角平分线,那么就有

    三角形的角平分线与一个角的角平分线不一样,三角形的角平分线是一条线段,有长度,而角的平分线是一条射线,没有长度.

    (教学说明:对于三角形的角平分线的探究,教师要给学生足够的空间和时间,如果漏下了哪一点没有探究到,教师可以给予提示.)

    三、巩固训练 熟练技能

    (设计说明:通过比较练习,帮助学生掌握三角形的高、中线和角平分线的基本性质,熟练基本技能.)

    练习1:如图,在△ABC中画出这个三角形的高BD,中线CE和角平分线BF.

    文本框:

    文本框:

    练习2:如图,已知AD,BE,CF都是△ABC的三条中线.

    则AE= = ,BC=2 ,AF= .

    学生:CE,AC,BD或CD,BF.

    文本框: 练习3:如图,已知AD,BE,CF都是△ABC的三条角平分线.

    则∠1= ,∠2= = ,

    ∠ABC=2 .

    学生:∠BAC,∠3,∠ACB,∠4或∠ABE.

    练习3:如图,△ABC中,AC=12 cm,BC=18 cm,△ABC的高AD与BE的比是多少?

    学生:解:由三角形的面积公式得

    所以有

    解得

    (教学说明:练习的设计以基础知识为主,要让学生独立完成.而练习3是所学知识的一个应用,要让学生有利用面积求高的意识,开阔思路.)

    四、反思总结 情意发展

    (设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。)

    问题1:本节课你学习了什么?

    问题2:本节课你有哪些收获?

    问题3:通过今天的学习,你想进一步探究的问题是什么?

    (教学说明:以上设计再次通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,纳入自己的知识结构)

    五、课堂小结

    1.本节主要学习三角形的高、中线和角平分的概念与性质.

    2.本节涉及到的思想方法是类比思想.

    3.注意的问题:

    (1)每个三角形都有三条高,三条中线和三条角平分线.

    (2)三角形的三条高交于一点,但锐角三角形的高交于三角形内一点,直角三角形的高交于直角的顶点,钝角三角形的高交于三角形外一点.三角形的三条中线交于三角形内一点,三角形的三条角平分线也交于三角形内的一点.

    (3)三角形的高、中线和角平分线都是线段.

    (4)能将三角形的面积平均分成两部分的线是三角形的中线.

    六、布置作业

    1、课本69页习题7.1的3、4;

    (教学说明:及时作业是巩固课堂学习知识的重要环节,练习题是对本节的基础知识进行巩固.)

    七、拓展练习

    (设计说明:在学习基础知识的基础上,拓展学生思维,提高学生的学习兴趣。)

    练习1:如图,在直角三角形中,AC⊥BC,AC=8,BC=6,AB=10.

    求顶点C到边AB的高.

    学生:解:设顶点C到边AB的高为h,由三角形的面积公式可得

    ,

    所以有,

    解得:h=4.8

    文本框: 所以,顶点C到边AB的高为4.8.

    练习2:如图,在△ABC中,AD是角平分线,DE//AC,DF//AB.试判断∠3和∠4的关系,并说明理由.

    学生:解:∠3=∠4.

    理由:∵AD平分∠BAC,

    ∴∠1=∠2,

    又∵DE//AC,DF//AB,

    ∴∠1=∠4,∠2=∠3

    ∴∠3=∠4.

    练习3:利用所学知识将三角形分成面积相等的四部分.(至少画出4种)

    学生:利用三角形中线的性质可得

    ……

    (教学说明:这三个练习是三角形的高、中线和角平分线的应用,特别是练习2,加入了平行线的性质,所以教师应给学生一定的思考时间,并让学生充分的合作交流,共同解决问题.)

    【评价与反思】

    本节内容是七年级数学第七章的第二节,主要介绍三角形的高、中线和角平分线的概念及基本性质,虽是一节概念教学课,但重点却在性质的应用上.

    本节的知识内容较多,不仅要让学生了解三角形的高、中线和角平分线的概念,还要对这三种线段的表示方法和性质进行探究.在教学过程中,教师引导学生从熟悉的知识入手,并利用类比的方法自主探索新的知识.在教学过程中,教师应让学生以独立思考为主,并在必要时进行互助交流,让学生经历得出结论的过程,培养学生解决问题的能力.

    在教学设计上,关注学生自主学习、合作交流的过程,让学生体会类比思想在探索新知中的作用,使学生在亲自经历整个探究过程后,能够对三角形的高、中线和角平分线的概念及性质有更好的理解,在获得数学活动经验的同时,提高探究、发现和创新的能力.

    中考 高考名著

    常用成语

    新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号